

Hierarchical MoS₂ Nanosheet@TiO₂ Nanotube Array Composites with Enhanced Photocatalytic and Photocurrent Performances

Lingxia Zheng, Sancan Han, Hui Liu, Pingping Yu, and Xiaosheng Fang*

A novel type of hierarchical nanocomposites consisted of MoS_2 nanosheet coating on the self-ordered TiO_2 nanotube arrays is successfully prepared by a facile combination of anodization and hydrothermal methods. The MoS_2 nanosheets are uniformly decorated on the tube top surface and the intertubular voids with film appearance changing from brown to black color. Anatase TiO_2 nanotube arrays (NTAs) with clean top surfaces and the appropriate amount of MoS_2 precursors are key to the growth of perfect compositing $TiO_2@MoS_2$ hybrids with significantly enhanced photocatalytic activity and photocurrent response. These results reveal that the strategy provides a flexible and straightforward route for design and preparation nanocomposites based on functional semiconducting nanostructures with 1D self-ordered TiO_2 NTAs, promising for new opportunities in energy/environment applications, including photocatalysts and other photovoltaic devices.

1. Introduction

Since the pioneering work on water splitting by Fujishima and Honda,^[1] titanium dioxide (TiO₂) has been extensively investigated and remained as one of the most promising candidates for photocatalysts and photoelectrodes due to its high chemical stability, favorable band edge positions, strong optical absorption, eco-friendliness, and abundant availability.^[2–5] Among different crystal structures and morphologies of TiO₂, vertically oriented anatase 1D TiO₂ nanotube arrays (TiO₂ NTAs) grown by a simple electrochemical anodization method show the highest activity for solar energy conversion in the viewpoint of high surface-tovolume ratio and excellent electron transport property.^[6–8] More importantly, the structural characteristics (tube diameters, length, tube packing densities, etc.) of TiO₂ NTAs can be facilely controlled by fine design of anodization process

Dr. L. X. Zheng, S. C. Han, Dr. H. Liu, Dr. P. P. Yu, Prof. X. S. Fang Department of Materials Science Fudan University Shanghai 200433, P. R. China E-mail: xshfang@fudan.edu.cn

the rapid recombination rate of photogenerated electronhole pairs of TiO₂ leads to a low quantum efficiency and poor photocatalytic activity. In order to address these obstacles, a plethora of strategies have been explored to improve the photoresponse of 1D TiO₂ NTAs. For example, metal/ nonmetal impurity doping was shown to introduce mid-gap energy levels, which were expected to control the band gap response of the TiO₂ NTAs and enhance their visible spectrum properties.^[11–15] In particular, the growth of TiO_2 -based composites (core-shell geometry or nanoparticle decoration) is considered to be one of the most promising routes due to the improvement of charge carrier separation.^[16-19] It is of paramount importance to design efficient semiconductorbased composites with desirable architectural structure/ morphology enabling synergistic impacts on the overall performance of photocatalytic and photoelectrochemical applications. Molybdenum disulfide (MoS_2) , a member of the layered transition metal dichalcogenides family, has been a focus of study for wide applications due to its high activity, excellent

morphologies, good electronic and optical properties, such

(such as anodization time, potential/current, electrolyte, and

temperature).^[4,9,10] However, as an n-type wide band gap

semiconductor, TiO₂ can solely absorb the UV light, which

accounts for less than 5% over the full solar resource, thus

significantly limiting its widespread applications. In addition,

DOI: 10.1002/smll.201503441

small 2016, 12, No. 11, 1527–1536

as supercapacitors, hydrogen storage, catalysis, microelectronics, and optoelectronic.^[20-27] With an analog structure to graphene, each layer of MoS₂ consists of molybdenum atoms sandwiched between two lavers of hexagonally close-packed sulfur atoms and the sandwiched adjacent lavers are held together by the weak van der Waals forces. To date, the MoS₂-based semiconductor heterostructures, such as CdS/MoS₂,^[28] MoO₃/MoS₂,^[29] SnO₂/MoS₂,^[30] with good photocatalytic or photoelectrochemical properties have been successfully synthesized, since the efficient charge separation can be obtained by coupling two semiconductor structures with the matched energy levels. In particular, MoS₂/TiO₂ nanocomposites are one of the best candidates for contributing to superior energy and environment performances given their great crystal-modification potential for conductance, aspect ratio, and ultrathin edges. There are a few existing studies of MoS₂/TiO₂ nanocomposites with remarkable photocatalytic activity or lithium storage performances.^[27,31-38] For example, Zhang et al.^[27] reported a 3D hierarchical heterostructures constructed by few-layer MoS₂ nanosheet coating on the TiO₂ nanobelts with enhanced photocatalytic efficiency. Xu et al.^[39] demonstrated that the MoS₂ nanosheet@TiO₂ nanotube hybrids prepared via a template-assisted hydrothermal method exhibited high reversible lithium storage capacity and superior rate capability. However, the reported MoS₂/TiO₂ nanocomposites were classical powder assemblies, difficult for recycling use or requiring additives/binders to prepare the electrodes. It is strongly desirable to easily fabricate TiO₂-film-based nanocomposites with highly defined 1D geometries owing to their advantageous directional charge transfer, improved ion diffusion, and increased active facet exposure. Moreover, the introduction of foreign species with undesirable morphologies is preferentially occurred only at top surface of the TiO₂ NTAs and usually results in the blocking of the tube openings.^[40] To the best of our knowledge, a few studies have been reported on the synthesis of MoS₂ nanosheets coating on an array of self-ordered TiO₂ nanotubes nanocomposites.

Herein, a modified two-step anodization approach is proposed to grow highly ordered TiO2 NTAs with clean top surface, providing easy access for the uniform loading of MoS₂ nanostructures via a facile hydrothermal method. Note that the as-anodized TiO₂ NTAs sample was amorphous and intentionally annealed to anatase in order to increase conductivity before compositing with MoS₂. The oxide film color was found to change from brown to black after the decoration of MoS₂ species. The MoS₂ nanosheets are evenly distributed over the tube top surface and the intertubular voids rather than filling in the tubes, thus allowing these nanotubular channels open to the environment, which are beneficial to efficient transport of ions and electrons. More importantly, these novel TiO₂@MoS₂ nanocomposites exhibit enhanced photocatalytic activity and improved photocurrent response due to the higher light absorption at visible light range and faster charge separation with lower recombination chance comparing to the pristine TiO₂ NTAs. The straightforward and low cost method presented here provides the flexibility of hybridizing 1D self-ordered TiO₂ NTAs with a wide scope of functional semiconducting nanostructures, promising

for new opportunities in energy/environment applications, including photocatalysts and other photovoltaic devices.

2. Results and Discussion

The X-ray diffraction (XRD) patterns of the three as-prepared samples: the pristine TiO₂ NTAs, pure MoS₂ sample, and the TiO₂@MoS₂ composites are shown in Figure 1. The diffraction patterns for the pristine TiO₂ NTAs match the standard peaks of anatase TiO₂ phase (JCPDS card No. 21-1272) with the lattice parameters of a = b = 0.316 nm, c = 1.230 nm. A major peak centered at 25.3° can be assigned to (101) facet of anatase TiO₂.^[16] As for pure MoS₂ sample, the detected peaks located at 14.2° and 33° can be indexed to (002), (100) planes in the hexagonal phase MoS₂ (JCPDS card No. 37-1492).^[27] All diffraction peaks of anatase TiO₂ are still present in the XRD patterns of the TiO₂@MoS₂ composites, suggesting that the intrinsic structure of TiO₂ NTAs are well retained during the hydrothermal reaction. Interestingly, the peak assigned to (002) plane of the MoS₂ (14.2°) is absent. This diffraction peak is corresponding to the *c*-plane of MoS_2 and can be used to study the structure of MoS₂, which is consisted of Mo atoms coordinated with S atoms to form the S-Mo-S sandwiched layer. The absence indicates that the MoS_2 nanosheets decorated on the TiO_2 NTAs may contain only a few layers, too thin to be detected by XRD, indicating that the growth of MoS_2 along the (002) facet might be suppressed by the pure TiO₂ NTAs during the hydrothermal process.^[27,41]

Figure 2 depicts the scanning electron microscopy (SEM) images of the structural morphologies of the pure TiO₂ NTAs prepared by a modified two-step anodization method^[42,43] from both top surface and cross-sectional views. The anodic TiO₂ NTAs generated by the first anodization exhibits vertically oriented tubular array with an average diameter of \approx 60 nm and a film length of \approx 9 µm as shown in Figure 2a,b.

Figure 1. XRD patterns of pristine TiO_2 NTAs, pure MoS_2 sample, and $TiO_2@MoS_2$ composites.

www.MaterialsViews.com

Figure 2. SEM images of the anodized TiO_2 NTAs a,b) at the first time and c,d) the second time, respectively. Inset in (a) shows the bottom view of the TiO_2 NTAs; inset in (c) shows the optical graph of the as-anodized TiO₂ NTAs.

found that with an appropriate loading amount of the MoS₂ precursors, thin MoS₂ nanosheets, interconnected with each other, are evenly distributed on both the tube top surface and the intertubular voids while leaving the tube inside unfilled without obvious morphological change of the TiO₂ NTAs backbones. Additional cross-sectional SEM images were taken from different locations of the TiO2@MoS2 composite sample as shown in Figure 4. The results further confirmed the existence of MoS₂ nanosheets decorating in-between the tube gaps. The amount of MoS₂ precursors is critical as they are very likely to aggregate together by forming nanospheres, randomly sitting on top surface of the nanotubes (Figure S2, Supporting Information). As reported,^[40,46,47] the introduction of foreign species to the anodic TiO₂ NTAs generally occurs at the top surface and usually blocks the tube openings. In this study, the few-layer MoS₂ nanosheets perfectly decorated around the tube moths and the intertubular gaps, allowing large portion of tube surface accessible to the environment. The reason can be possibly due to higher conductivity of the anatase TiO₂ after thermal annealing treatment

The disordered tube-top structures can be clearly observed, mainly due to the chemical etching upon exposure to fluoridecontaining electrolyte which corrodes the upper part of the nanotubes. These undesirable features are detrimental to many applications^[43–45] and also easily lead to the random growth of MoS₂. Only a small portion of the MoS₂ nanosheets stack and gather around the tube mouth and randomly decorated on the outer tube walls (Figure S1, Supporting Information). In light of this, a second-anodization process was performed under similar condition to grow highly ordered TiO₂ NTAs with clean top surface as shown in Figure 2c,d with a common brown appearance (inset in Figure 2c). A thin layer of continuous nanoporous structure is formed on the top surface of NTAs with pore diameters ranging from 50 to 170 nm. Noteworthy, these top-porous networks can prevent nanotubes bundling and allow a high tube packing density beneficial to the specific surface area.^[43] The average outer tube diameters are estimated to be 140 nm and the overall film thickness is $\approx 4 \ \mu m$. It is noted that the clean top surface of the NTAs plays a significant role in providing an easy access for the uniform loading of MoS₂, which will be discussed later.

Typical SEM images of the synthesized $TiO_2@MoS_2$ composites are illustrated in **Figures 3**a–d and **4**. Distinctly different color (from brown to black, inset in Figure 3a) is readily observed after the decoration of MoS₂ onto TiO₂ NTAs. It is

Figure 3. SEM images of $TiO_2@MoS_2$ composites from both a,b) the top and c,d) the crosssectional views, and e,f) pure MoS_2 nanospheres. Inset in (a) shows the optical graph of $TiO_2@MoS_2$ composites.

Figure 4. Cross-sectional SEM images of $TiO_2@MoS_2$ composites taken from different locations of the sample. The scale bar is 1 μ m.

than the as-anodized amorphous TiO_2 . Confirmed by SEM images in Figure S3 (Supporting Information), due to the semiconductive nature of TiO_2 , both MoS_2 nanoparticles and a few nanosheets are formed on the thin continuous porous layer on top of the self-ordered nanotubular array when coupling the MoS_2 with amorphous TiO_2 NTAs.

Thus, clean top surface and crystalline of the anodic TiO_2 NTAs together with the appropriate amount of MoS_2 precursors play a vital role in generating the novel $TiO_2@MoS_2$ composites. As for pure MoS_2 sample, self-assembly nanospheres (MoS_2 NSs) are formed with diameters ranging from 150 to 500 nm by using the same hydrothermal method without the presence of anodic TiO_2 NTAs (Figure 3e,f).

The morphologies of pristine TiO_2 NTAs and TiO_2 @MoS₂ composites were further confirmed by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) observations (**Figure 5**). As shown in Figure 5a–c, the anodic TiO_2 NTAs are packing closely with diameters ranging from 60 to 160 nm, consistent with the SEM results in Figure 2. The selected area electron diffraction pattern (SAED) (inset of Figure 3c) displays clear anatase diffraction rings consisting of clean diffraction dots, indicating the highly crystalline nature of the pristine TiO_2 NTAs. The well-resolved lattice fringes of 0.35 nm corresponding to the (101) plane of

TiO₂ (HRTEM in Figure 5g) also confirm the anatase structure, consistent with the XRD results. The (101) crystallographic plane is determined to be the major exposed surfaces of the NTAs, which is reported to be the most thermodynamically stable crystal facet of anatase TiO₂. Typical low-magnification TEM images of the TiO₂@MoS₂ composites are displayed in Figure 5d-f. Thin MoS₂ nanosheets are coated on the tube top layer and the intertubular gaps, leaving the tube inside unfilled, in agreement with the SEM observations in Figure 3. Due to the high electrical resistivity of native TiO₂, the decoration of foreign species occurs preferentially on top of the layers rather than inside the nanotubes. The distinguished distance of the adjacent lattice fringes with 0.6 nm (Figure 5h-i) can be clearly observed, suggesting the well-defined crystal structure of MoS₂. Moreover, both the readily observed cross lattice fringes and the milky diffraction rings from the SAED (inset in Figure 5f) suggest that the MoS₂ combines the anodic TiO₂ NTAs well to form composite hybrids, promising for photocatalytic activities.

X-ray photoelectron spectroscopy (XPS) analysis was performed to study the chemical components and the states of Mo and S in the $TiO_2@MoS_2$ nanocomposites. As shown in **Figure 6**a, the survey XPS spectra reveal that the dominant elements are Ti, O, S, Mo, and C of the

TiO₂@MoS₂ composites. The high-resolution XPS spectra of Mo, S for pure MoS₂ NSs and TiO₂@MoS₂ composites are indicated in Figure 6b,c. The binding energies of Mo 3d_{3/2} and Mo 3d_{5/2} for pure MoS₂ nanospheres are ≈232.2 and ≈229.2 eV, respectively, indicating the presence of Mo^{4+} . The separation energy close to 3.0 eV can be ascribed to the typical characteristics of Mo species, which is also existed in the TiO₂@MoS₂ composites with corresponding binding energies of ≈234.2 and ≈229.2 eV, respectively. The high-resolution spectra of S 2p indicate two major peaks at 162.3 eV and 161.1 eV, corresponding to S 2p_{1/2} and S 2p_{3/2} spin orbits, respectively (Figure 6c). The intensity ratio is $\approx 1:2$ and their separation energy is ≈1.2 eV, in good agreement with previously reported data.^[32,48] For the TiO₂@MoS₂ composites, the fitted peaks are shifted to more negative binding energies of ≈ 1.0 eV, suggesting the electronic interaction between MoS₂ and TiO₂.^[32] A comparison of the observed spin-energy separation of ≈ 5.8 eV between Ti $2p_{1/2}$ and Ti $2p_{3/2}$ peaks indicates a normal chemical state of Ti⁴⁺ in both pure TiO₂ NTAs and TiO₂@MoS₂ composites (Figure 6d). Similarly, the binding energies of Ti 2p for TiO₂@MoS₂ composites shifted to negative higher energies due to the existence of Ti³⁺ states. As reported,^[4] the Ti³⁺ states exhibit higher reactivity by trapping electrons and resulting in the formation of radicals

Figure 5. TEM images of a-c) pristine TiO₂ NTAs and d-f) TiO₂@MoS₂ composites. High-resolution TEM (HRTEM) images of g) pristine TiO₂ NTAs and h,i) the designated square parts in (e,f) of TiO₂@MoS₂ composites. Insets in (c,f) show the corresponding SAED patterns.

5 nm

10 nm

MO

5_nm

Figure 6. XPS spectra of pristine TiO_2 NTAs, pure MoS_2 NSs, and $TiO_2@MoS_2$ composites: a) the survey scan, b) Mo 3d, c) S 2p, and d) Ti 2p XPS spectrum.

Figure 7. Raman spectra of pristine TiO_2 NTAs, pure MoS_2 NSs, and $TiO_2@MoS_2$ composites. Inset shows the fitting peaks of the pure MoS_2 sample.

covalently linked to the surface of TiO_2 . And these shallow defects can release trapped charge carriers to the nearby conduction or valence bands (VBs) by thermal excitation, beneficial to photocatalytic and photocurrent performances.

Figure 7 shows a comparison of Raman spectra of pristine TiO₂ NTAs, pure MoS₂ NSs, and TiO₂@MoS₂ composites. For TiO₂ NTAs sample, a very intense Raman band with $E_{1g} \approx 145 \text{ cm}^{-1}$ can be observed, corresponding to the main

www.MaterialsViews.com

 E_{α} anatase vibration mode. Three strong vibrational peaks located at 392 (B_{1g}) , 513 (A_{1g}), and 634 cm⁻¹ (E_g) also verify the presence of anatase TiO_2 . In the spectrum of pure MoS₂ NSs, a broad peak centred at 403 cm⁻¹ is fitted into two dominant scattering peaks (inset in Figure 7) and can be assigned to E_{2g} and A_{1g} modes of MoS₂, respectively. These featuring peaks can also be found in the Raman spectrum of the TiO₂@MoS₂ composites, suggesting the successful introduction of MoS₂ species into the TiO₂ NTAs system. There is a small blue shift observed in the mode of E_{1g}, A_{1g}, and E_g in the TiO₂@ MoS₂ composites compared with those of pure TiO₂, which is possibly due to the surface strain induced by the decorated MoS₂ nanosheets on the surface of TiO₂ NTAs.[38,49]

The photocatalytic activity of the unique $TiO_2@MoS_2$ composite was evaluated by measuring its efficiency in the

(Figure 8). RhB is a nonbiodegradable dye commonly used in textile and paper industrials. Before light irradiation, an adsorption-desorption equilibrium would be established between the photocatalysts and RhB in the dark. Interestingly, the TiO₂@MoS₂ composites were found to exhibit stronger adsorption ability toward RhB than both the pristine TiO₂ and pure MoS₂, which was reported to be highly

Figure 8. a) The corresponding degradation rate of RhB as a function of irradiation time and b) the plots of $\ln(C_0/C)$ versus time of pure MoS₂ NSs, P25, pristine TiO₂ NTAs, and TiO₂@MoS₂ composites. c) UV–vis diffuse reflectance spectra (DRS) and d) the corresponding plot analysis of optical band gap of pristine TiO₂ NTAs and TiO₂@MoS₂ composites.

favorable to the photocatalytic activity.^[27] Control experiment (in the absence of any photocatalysts, denoted as "blank" in Figure 8) reveals that the dye degradation under UV illumination is almost negligible. It is evident that the photodegradation efficiency of the TiO2@MoS2 composites is significantly higher than that of pristine TiO₂ NTAs and pure MoS₂ NSs, suggesting the beneficial photocatalytic activity in the composite nanostructures. Notably, comparing to commercially available P25 powder, the efficiency of the TiO₂@MoS₂ composites still proves to be better. To be specific, the concentrations of RhB are reduced by 74.5%, 65.8%, and 53.9% after 120 min of irradiation, respectively, when using the pristine TiO₂ NTAs, P25, and the pure MoS₂ NSs as the photocatalysts. However, the concentration of RhB can be reduced by 85.3% by using the TiO₂@MoS₂ composites. The decomposition of RhB pollutant follows the pseudo-first-order reaction kinetic and can be expressed as: $\ln(C_0/C) = kt$, where C_0 is the initial RhB concentration after adsorption equilibrium, C is the concentration after a certain reaction time, k is the rate constant, and t is the reaction time. In Figure 8b, the k values of pristine TiO_2 NTAs, P25, pure MoS₂ NSs, and TiO₂@MoS₂ composites are calculated to be 0.0113, 0.00925, and 0.00624 min⁻¹, respectively. Evidently, the k value of $TiO_2@MoS_2$ composites is apparently the highest $(0.01646 \text{ min}^{-1})$, which is almost 1.5, 1.8, and 2.6 times higher than that of pure TiO₂ NTAs, P25, and pure MoS₂ NSs, respectively, indicating that the introduction of MoS₂ into TiO₂ can highly promote the enhancement of photocatalytic activity. The photocatalytic activity of semiconductor oxides is known to be mainly governed by light absorption, the recombination rate of photogenerated charge carriers, etc.^[50,51] Hence, these factors are discussed as follows.

The optical properties of TiO₂ NTAs and the TiO₂@MoS₂ composites are determined by UV–vis diffuse reflectance spectra (DRS). Comparing with TiO₂ NTAs, the obtained TiO₂@MoS₂ composites exhibit a higher absorption (lower reflectance as shown in Figure 8c) in the visible range (400–600 nm), contributing largely to the enhancement of photocatalytic activity. The energy band gap (E_g) can be estimated by the conventional Tauc equation^[40,52]

$$\alpha h v = A(h v - E_g)^n \tag{1}$$

where hv is the photon energy, α is the absorption coefficient, A is the constant, n = 2 for an indirectly allowed transition, and n = 1/2 for a directly allowed transition. The corresponding Kubelka–Munk transformed reflectance spectra are shown in Figure 8d, where the slopes of the tangents on horizontal axis are band gap energies. The calculated E_g is estimated to be 3.20 eV for pure TiO₂ NTAs (corresponding to the absorption edge of 387 nm) and 1.65 eV for TiO₂@ MoS₂ composites (corresponding to the absorption edge of 750 nm), indicating that the presence of MoS₂ enhances the optical absorption properties, which has a positive effect on the photocatalytic activity.

The efficiency of charge trapping and recombination of photoinduced electron-hole pairs in the semiconductor can

Figure 9. Room temperature PL emission spectra of pristine TiO_2 NTAs and TiO_2 @MoS₂ composites with an excitation wavelength of 320 nm.

be verified by the photoluminescence (PL) emission spectrum. As shown in **Figure 9**, the emission spectra of $TiO_2@$ MoS₂ composites appear to be similar with pure TiO₂ NTAs, which means that the loading of MoS₂ nanosheets has not induced new PL. There are three main emission peaks located at 392 nm (≈3.16 eV), 468 nm (≈2.65 eV), and 523 nm (≈2.37 eV). The first peak can be assigned to electronic transition from the bottom of conduction band (CB) to the top of VB, and the other two peaks are likely attributed to the defect levels formed by oxygen vacancies.^[53,54] Furthermore, the PL intensity of TiO₂@MoS₂ composites is strongly weakened from 380 to 550 nm than that of the bare TiO₂ NTAs under excitation at 320 nm, suggesting that the recombination of photogenerated electrons and holes is suppressed effectively.^[28,51] Therefore, the TiO₂@MoS₂ composite can effectively retard the recombination of photogenerated charge carriers and prolong the lifetime of electron-hole pairs, resulting in the superior photocatalytic activity.

The heterojunction created between MoS_2 and TiO_2 also exerts great influence on the photocurrent response, as comparatively studied in Figure 10. The maximum photocurrent density of TiO₂@MoS₂ composites is ≈7.72 mA cm⁻², which is twice higher than that of pristine TiO₂ NTAs (≈3.38 mA cm⁻²) (Figure 10a), meaning stronger ability of producing charge carriers and more separated electrons in TiO₂@MoS₂ composites. In addition, the onset potential of TiO₂@MoS₂ composites is negatively shifted with respect to pristine TiO₂ NTAs, indicating that more electrons liberated and accumulated in the heterojunction and thus leading to more electronegativity of the anode potential.^[55] Figure 10b illustrates the current-time (I-t) characteristics in three different electrodes of pristine TiO₂ NTAs, pure MoS₂ NSs, and TiO₂@MoS₂ composites upon several light ON/OFF cycles. It can be seen that TiO₂@MoS₂ composites display good photoswitching performance with fast response time and stable photostability. The photocurrent density is found to be 3.2 mA cm⁻², much higher than that of pristine TiO_2 NTAs ($\approx 2.1 \text{ mA cm}^{-2}$). The photoresponse activity of pure MoS₂ NSs is very low and can be negligible, which is possibly due to the low conductivity of MoS₂ that limits the electron

Figure 10. a) Line sweep voltammograms and b) chopped photocurrent response with light ON/OFF every 15 s at an external bias of 0.6 V measured from three different photoelectrodes: pristine TiO_2 NTAs, pure MoS₂ NSs, and $TiO_2@MoS_2$ composites under Xe lamp illumination.

transfer.^[56] The remarkably increased photocurrent density in $TiO_2@MoS_2$ composites could be ascribed to faster electron transport from VB to CB and a high separation efficiency of the photogenerated electron-hole pairs due to the introduction of MoS_2 .

Scheme 1. Schematic illustration of the energy band structure and electron-hole separation of $TiO_2@MoS_2$ composites.

The Schematic diagram (Scheme 1) illustrates the energy band structure and the principle of the separation of charge carriers in TiO₂@MoS₂ composites. In general, anatase TiO₂ has a wide band gap (≈ 3.2 eV) with a work function of 4.5 eV, while MoS₂ is a narrow band gap (≈1.8 eV) semiconductor with a work function of 4.52 eV.^[4,28,57] Upon light illumination, electrons are promptly excited from VB of MoS₂ to CB, leaving behind holes in the VB. Since the CB of TiO₂ is situated lower than that of MoS₂, the TiO₂ can be used as a photoelectronic receiver, and the photo-induced electrons in the CB of MoS₂ could be rapidly transferred to the CB of TiO₂ NTAs.^[27,38] The photogenerated electrons can be trapped by oxygen molecules in the aqueous solution to form superoxide radical anions $(O_2 + e^- \rightarrow O_2^{-\bullet})$, the activated superoxide radical anion O2-• could remove organic pollutants or further produces oxygen species via a series of reactions with H⁺, such as oxidative H₂O₂, hydroxyl radicals OH•, meanwhile, the holes move in the opposite direction and oxidize water into hydroxyl radicals (H₂O $+ h^+ \rightarrow OH^{\bullet}$), which are highly oxidative and can react with organic species to produce mainly carbon dioxide and water. This high interfacial charge transfer and separation ability suppressed the recombination of electron-hole pairs, which explained the enhance photoactivity and improved photocurrent response in TiO₂@MoS₂ composites.^[5,53]

3. Conclusions

A novel type of hierarchical TiO2@MoS2 composites by decorating thin layer MoS₂ nanosheets onto 1D anodic self-ordered TiO₂ NTAs is successfully prepared by a facile hydrothermal method. The MoS₂ nanosheets are uniformly coated on the tube top surface and the intertubular voids with appearance changing from brown to black color. Anatase TiO₂ NTAs with clean top surface and the appropriate amount of MoS₂ precursors are the keys to grow perfect TiO₂@MoS₂ composites with significantly enhanced photoactivity and improved photocurrent response due to the higher light absorption at visible range and faster charge separation with lower recombination chance comparing to the pristine TiO₂ NTAs. This facile and low-cost method provides the flexibility of hybridizing the self-ordered TiO₂ NTAs with a wide scope of functional semiconducting nanostructures at high throughput rate, and thus would greatly enable the investigation and optimization of the dual-semiconductor material system and accelerating the translation into applications in photocatalysts, and other photovoltaic devices.

4. Experimental Section

Preparation of Anodic TiO_2 NTAs: The titanium foils (0.25 mm thick, 99.7% purity, Sigma-Aldrich) were ultrasonically cleaned in acetone, ethanol, and deionized water successively, and then dried in a nitrogen stream before anodization. Anodic TiO_2 films were generated in a two-electrode electrochemical cell, with a Pt gauze as the counter electrode and a Ti foil as the working

anode. The Ti working anode was pressed together with an Al foil against an O-ring, defining a working area of 1.766 cm² (diameter of 1.5 cm). An anhydrous ethylene glycol (99.8%, Sigma-Aldrich) solution of 0.27 wt% NH₄F (98%+, Sigma-Aldrich) and 5 vol% H₂O was used as the electrolyte. In order to effectively reduce the defects on the surface and help grow well-aligned nanotubular array, the Ti foils were preanodized in the electrolyte at 60 V for 2 h, and then the oxide films were peeled off by ultrasonicating in acetone. Then they were anodized for the second time using fresh electrolyte with the same conditions at 60 V for 20 min to grow the self-ordered NTAs with clean top surface. All the anodization experiments were performed at room temperature. After anodization, the sample was washed with ethanol and then dried in a nitrogen stream. To obtain the anatase TiO₂ NTAs (denoted as pristine TiO₂ NTAs), the as-anodized samples were thermally treated at 450 °C in air for 3 h.

Synthesis of TiO₂@MoS₂ Nanocomposites: Coupling TiO₂ NTAs with MoS₂ nanosheets was achieved by a facile hydrothermal reaction. In a typical process, sodium molybdate dihydrate $(Na_2MoO_4 \cdot 2H_2O, 10 \text{ mg})$ and thioacetamide $(C_2H_5NS, 20 \text{ mg})$ were dissolved in D.I. water (20 mL), stirred for 30 min and then transferred into a 100 mL stainless steel Teflon lined autoclave. The annealed anatase TiO₂ NTAs film was placed at the bottom of the autoclave. The autoclave was put into an electric oven and heated at 200 °C for 24 h, and then cooled to room temperature naturally. The hybrid material was washed several times with distilled water and ethanol, respectively. Finally, the TiO₂@MoS₂ composites were dried in a nitrogen stream. The sample was annealed in an N₂ atmosphere at 450 °C for 2 h to improve the crystallinity of MoS₂. For comparison, pure MoS₂ NSs were synthesized via the similar hydrothermal process using Ti foil as the substrate without the presence of anodic TiO₂ NTAs, and then annealed in N₂ atmosphere at 450 °C for 2 h.

Analysis Instruments: Sample morphologies were characterized using a field emission scanning electron microscopy (FESEM, Model JSM-6701F) and a TEM (Model, TECNAI G² S-TWIN). X-ray diffraction patterns were collected on a Bruker D8-A25 diffractometer using Cu K α radiation ($\lambda = 1.5405$ Å). The XPS spectra of the samples were recorded by a Perkin Elmer PHI 5000 C ESCA system equipped with a hemispherical electron energy analyzer, and the Mg K α (1253.6 eV) anode was operated at 14 kV and 20 mA. The Raman spectroscopy (Spex 403 Raman microscope with 532 nm argon ion laser) was employed to verify chemical bonding characteristics. The optical properties were investigated by optical DRS using a UV-vis spectrophotometer (Hitachi U-4100) with an integrating sphere attachment. PL emission spectra were recorded under ambient conditions (Horiba, Fluoromax-4) with an excitation light at 320 nm induced from an He-Cd laser source.

Photocatalytic Degradation Test: The efficiency of the fabricated films to degrade RhB was measured and used as an indicator of the photocatalytic ability. The tested sample was immersed in an aqueous solution of RhB (5 mL, 10 mg L⁻¹) under UV light (230 W long-wave mercury lamp with main wavelength 365 nm) irradiation at room temperature. The working area of the anodic TiO₂ film was fixed to be 1.766 cm² (diameter of 1.5 cm). The mass of the TiO₂ NTAs samples was found to be \approx 1 mg by measuring five anatase TiO₂ NTA samples. The control experiments were carried out in absence of any photocatalyst (denoted as "blank"). For compar-

ison, 1 mg P25 powder (Degussa, Germany) was dispersed in 3 mL ethanol, deposited on Ti foil of the same area (1.33 cm \times 1.33 cm), followed by a heat treatment at 450 °C for 2 h. The distance between the lamp and the solution was 12 cm. All the tested samples were stirred in the dark for 40 min to achieve the adsorption–desorption equilibrium between RhB and the photocatalysts. The concentration of RhB was monitored as a function of reaction time using a UV–vis spectrometer (Hitachi U-4100). The concentration of RhB was calculated from the absorption maxima located at 554 nm.

Photoelectrochemical Measurements: Photocurrent measurements were performed on an electrochemical workstation (CHI 660E, Chenhua, Shanghai) in a standard three-electrode configuration with three different photoelectrodes: pristine TiO₂ NTAs, pure MoS₂ NSs, and TiO₂@MoS₂ composites, as the working electrodes. All the samples can be used directly as electrodes under front illumination with back sides of the substrates covering with tape. The counter electrode and the reference electrode were Pt sheet and Ag/AgCl electrode, respectively. Time-dependent photoresponse tests were carried out by measuring the photocurrent under chopped light irradiation (light/dark cycles of 15 s) at a fixed bias of 0.6 V versus Ag/AgCl. A 0.1 M Na₂SO₄ aqueous solution was used as the electrolyte. The working area used was fixed at 1.766 cm² (diameter of 1.5 cm). The working electrode was irradiated by Xe lamp during the measurements. The distance between the working electrode and the light source was 20 cm and the focused incident light intensity on the working electrode was ≈80 mW cm⁻².

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

This work was supported by the Science and Technology Commission of Shanghai Municipality (15520720700 and 13NM1400300), the National Natural Science Foundation of China (Grant No. 51471051), the Shanghai Shu Guang Project (12SG01), and the Programs for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. Part of the experimental work was carried out in Fudan Nanofabrication Laboratory.

- [1] A. Fujishima, K. Honda, Nature 1972, 238, 37.
- [2] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001, 293, 269.
- [3] S. U. M. Khan, M. Al-Shahry, W. B. Ingler, *Science* **2002**, *297*, 2243.
- [4] P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 2011, 50, 2904.
- [5] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, *Chem. Rev.* 2014, *114*, 9919.

- [6] H. A. Hamedani, N. K. Allam, M. A. El-Sayed, M. A. Khaleel, H. Garmestani, F. M. Alamgir, *Adv. Funct. Mater.* 2014, 24, 6783.
- [7] S. G. Kumar, L. G. Devi, J. Phys. Chem. A 2011, 115, 13211.
- [8] K. Lee, A. Mazare, P. Schmuki, Chem. Rev. 2014, 114, 9385.
- [9] A. Ghicov, P. Schmuki, Chem. Commun. 2009, 2791.
- [10] V. M. Prida, E. Manova, V. Vega, M. Hernandez-Velez, P. Aranda, K. R. Pirota, M. Vázquez, E. Ruiz-Hitzky, J. Magn. Magn. Mater. 2007, 316, 110.
- [11] M. Favaro, S. Leonardi, C. Valero-Vidal, S. Nappini, M. Hanzlik, S. Agnoli, J. Kunze-Liebhäuser, G. Granozzi, *Adv. Mater. Interfaces* 2015, *2*, 1400462.
- [12] A. El Ruby Mohamed, S. Rohani, *Energy Environ. Sci.* 2011, 4, 1065.
- [13] H. Li, Z. Chen, C. K. Tsang, Z. Li, X. Ran, C. Lee, B. Nie, L. Zheng,
 T. Hung, J. Lu, B. Pan, Y. Y. Li, J. Mater. Chem. A 2014, 2, 229.
- [14] V. M. Prida, M. Hernández-Vélez, K. R. Pirota, A. Menéndez, M. Vázquez, Nanotechnology 2005, 16, 2696.
- [15] I. M. Low, H. Albetran, V. M. Prida, V. Vega, P. Manurung, M. Ionescu, J. Mater. Res. 2013, 28, 304.
- [16] C. W. Kim, S. P. Suh, M. J. Choi, Y. S. Kang, Y. S. Kang, J. Mater. Chem. A 2013, 1, 11820.
- [17] J. Zhang, J. H. Bang, C. Tang, P. V. Kamat, ACS Nano 2010, 4, 387.
- [18] K. Xie, Q. Wu, Y. Wang, W. Guo, M. Wang, L. Sun, C. Lin, *Electro-chem. Commun.* 2011, 13, 1469.
- [19] Q. Zhang, H. Xu, W. Yan, *Electrochim. Acta* **2012**, *61*, 64.
- [20] K.-K. L. Dung-Sheng Tsai, D. H. Lien, M. L. Tsai, C. F. Kang, C. A. Lin, L. J. Li, J. H. He, ACS Nano 2013, 7, 3905.
- [21] M. R. Esmaeili-Rad, S. Salahuddin, Sci. Rep. 2013, 3, 2345.
- [22] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, *Nat. Nanotechnol.* **2013**, *8*, 497.
- [23] G. Ma, H. Peng, J. Mu, H. Huang, X. Zhou, Z. Lei, J. Power Sources 2013, 229, 72.
- [24] J. Li, X. Liu, L. Pan, W. Qin, T. Chen, Z. Sun, *RSC Adv.* 2014, 4, 9647.
- [25] Y. Yang, H. Fei, G. Ruan, C. Xiang, J. M. Tour, *Adv. Mater.* **2014**, *26*, 8163.
- [26] Y. Yan, B. Xia, N. Li, Z. Xu, A. Fisher, X. Wang, J. Mater. Chem. A 2015, 3, 131.
- [27] W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, *Small* **2013**, *9*, 140.
- [28] Y. Liu, Y. X. Yu, W. D. Zhang, J. Phys. Chem. C 2013, 117, 12949.
- [29] Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara, T. F. Jaramillo, *Nano Lett.* **2011**, *11*, 4168.
- [30] J. Li, K. Yu, Y. Tan, H. Fu, Q. Zhang, W. Cong, C. Song, H. Yin, Z. Zhu, *Dalton Trans.* **2014**, *43*, 13136.

- [31] X. Li, W. Li, M. Li, P. Cui, D. Chen, T. Gengenbach, L. Chu, H. Liu, G. Song, J. Mater. Chem. A 2015, 3, 2762.
- [32] C. Liu, L. Wang, Y. Tang, S. Luo, Y. Liu, S. Zhang, Y. Zeng, Y. Xu, *Appl. Catal. B: Environ.* **2015**, *164*, 1.
- [33] H. Liu, T. Lv, C. Zhu, X. Su, Z. Zhu, J. Mol. Catal. A: Chem. 2015, 396, 136.
- [34] X. Zhu, C. Yang, F. Xiao, J. Wang, X. Su, New J. Chem. 2015, 39, 683.
- [35] W. Zhuang, L. Li, J. Zhu, R. An, L. Lu, X. Lu, X. Wu, H. Ying, Chem-ElectroChem 2015, 2, 374.
- [36] H. Fu, K. Yu, H. Li, J. Li, B. Guo, Y. Tan, C. Song, Z. Zhu, Dalton Trans. 2015, 44, 1664.
- [37] B. Guo, K. Yu, H. Fu, Q. Hua, R. Qi, H. Li, H. Song, S. Guo, Z. Zhu, J. Mater. Chem. A 2015, 3, 6392.
- [38] M. Shen, Z. Yan, L. Yang, P. Du, J. Zhang, B. Xiang, Chem. Commun. 2014, 50, 15447.
- [39] X. Xu, Z. Fan, S. Ding, D. Yu, Y. Du, Nanoscale 2014, 6, 5245.
- [40] P. Li, H. Hu, J. Xu, H. Jing, H. Peng, J. Lu, C. Wu, S. Ai, Appl. Catal. B: Environ. 2014, 147, 912.
- [41] K. Chang, W. Chen, J. Mater. Chem. 2011, 21, 17175.
- [42] S. P. Albu, P. Schmuki, Phys. Status Solidi-RRL 2010, 4, 151.
- [43] D. Wang, Y. Liu, C. Wang, F. Zhou, W. Liu, ACS Nano 2009, 3, 1249.
- [44] D. Kim, A. Ghicov, P. Schmuki, *Electrochem. Commun.* 2008, 10, 1835.
- [45] M. Ye, X. Xin, C. Lin, Z. Lin, Nano Lett. 2011, 11, 3214.
- [46] N. A. Kyeremateng, C. Lebouin, P. Knauth, T. Djenizian, *Electro-chim. Acta* 2013, 88, 814.
- [47] N. Liu, K. Lee, P. Schmuki, Angew. Chem. Int. Ed. 2013, 52, 12381.
- [48] T. L. Hui Liu, Chunkui Zhu, Xing Su, Zhenfeng Zhu, J. Mol. Catal. A: Chem. 2015, 396, 136.
- [49] C. Y. Xu, P. X. Zhang, L. Yan, J. Raman Spectrosc. 2001, 32, 862.
- [50] L.-W. Zhang, H.-B. Fu, Y.-F. Zhu, Adv. Funct. Mater. 2008, 18, 2180.
- [51] S. C. Han, L. F. Hu, Z. Q. Liang, S. Wageh, A. A. Al-Ghamdi, Y. S. Chen, X. S. Fang, Adv. Funct. Mater. 2014, 24, 5719.
- [52] Y. Wang, Y. N. Zhang, G. Zhao, H. Tian, H. Shi, T. Zhou, ACS Appl. Mater. Interfaces 2012, 4, 3965.
- [53] C. C. Mercado, F. J. Knorr, J. L. McHale, ACS Nano 2012, 6, 7270.
- [54] F. Teng, G. Zhang, Y. Wang, C. Gao, L. Chen, P. Zhang, Z. Zhang, E. Xie, *Appl. Surf. Sci.* **2014**, *320*, 703.
- [55] Q. Liu, H. Lu, Z. Shi, F. Wu, J. Guo, K. Deng, L. Li, ACS Appl. Mater. Interfaces 2014, 6, 17200.
- [56] N. Zhang, S. Gan, T. Wu, W. Ma, D. Han, L. Niu, ACS Appl. Mater. Interfaces 2015, 7, 12193.
- [57] E. Scalise, M. Houssa, G. Pourtois, V. V. Afanas'ev, A. Stesmans, *Physica E* 2014, 56, 416.

Received: November 11, 2015 Revised: December 14, 2015 Published online: January 22, 2016