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A B S T R A C T   

Metal halide perovskites (MHPs) have received substantial attention due to their impressive optoelectronic 
properties. In particular, nanoscale perovskite structures, such as nanowires (NWs) and nanoplates (NPs) are 
ideal building blocks for optoelectronic devices. However, metal electrodes can be hardly patterned on these 
materials with conventional lithographic methods due to the solvent sensitivity of perovskite crystals and 
alignment issues. Here, we report a solvent-free method to fabricate metal electrodes on perovskite NPs, which 
starts with the vapor deposition of water ice as an electron resist and ends in the sublimation of the ice followed 
by a “blow-off” process. The good compatibility between MHPs and ice as well as the in-situ imaging and 
patterning process guarantees the fabrication with high precision and resolution. Using this technique, we create 
metal electrodes on single-crystal MAPbBr3 NPs featuring a nanoscale gap of 296 nm and superior photo
detection ability with responsivity of 653 A/W and detectivity of 3.08 × 1013 Jones. Our study helps the widely- 
used electron-beam lithography break down barriers in processing perovskite materials, and provides an 
excellent platform to fully exploit their potentials in optoelectronic devices.   

1. Introduction 

The development of optoelectronic nanodevices is inseparable from 
the exploration of new semiconductor materials and innovative pro
cessing techniques [1,2]. As one class of promising semiconductors, 
organic-inorganic hybrid halide perovskites (MAPbX3, MA=CH3NH3

+, 
X––Cl-, Br-, I-) are of particular interest due to their large light absorption 
coefficient, long carrier diffusion length and high carrier mobility [3-5]. 
These impressive properties make perovskites excellent semiconductors 
for solar cells, photodetector, LEDs and lasers. Besides, processing 
temperature of perovskite materials is quite low (less than 150 ℃), 
enabling them to integrate with plastic or polymer substrates for flexible 
devices. In contrast to conventional vacuum processing, all-solution 
based synthetic route enables the production of single-crystalline 

perovskites with excellent optoelectronic properties [6-9]. However, the 
solubility of perovskites is also somewhat of a double-edge sword. It is 
thus difficult to make electrodes on perovskites through 
solution-processing steps [10–12]. For instance, electron-beam lithog
raphy (EBL) is currently the most widespread and reliable 
manufacturing method for fabricating electrodes when nanoscale di
mensions are needed [13,14]. The technique requires a standard process 
including spin-coating, electron-beam (e-beam) patterning, chemical 
development, metal deposition and lift-off. Unfortunately, abundant 
polar solvents such as anisole, methyl isobutyl ketone, isopropyl alcohol 
and acetone, which can readily degrade the perovskite crystals, are 
inevitably employed in the lithographic process. 

Reducing exposure to solvents in nanofabrication is thus the first 
essential to build perovskite nanodevices. A simplistic approach to 
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patterning on perovskites is utilizing area-selective deposition through a 
shadow mask or stencil where metals can be evaporated directly onto 
perovskites in a desired pattern [15-20]. Mechanical transfer of perov
skites to prepatterned structures alternatively meets such an expecta
tion. But both methods have limitations in positioning and alignment 
during nanofabrication. Recently, efforts have been made to optimize 
the standard EBL process for developing a perovskite-compatible 
lithography method with nanoscale precision. Orthogonal lithography 
by substituting high polar solvents (isopropyl alcohol and acetone) with 
the low polar (chlorobenzene: dissolving resist; hexane: resist develop
ment) successfully fabricated 2D perovskite photodetectors featuring 
excellent photoresponse [21]. A perovskite photodetector can also be 
obtained by employing a double layer of resists with different molecular 
weights [22]. Despite plenty of advancements, solvents are not avoided 
in these strategies, leading to complicated nanofabrication procedures 
with a high risk of damaging perovskite structures. 

Here, we demonstrate that ice-assisted EBL (iEBL) [23,24], utilizing 
water ice as an electron resist, can easily fabricate nanoscale metal 
patterns onto perovskites. It is an utterly solvent-free procedure which 
starts with vapor deposition of water ice and ends in the sublimation of 
the ice followed by a “blow-off” process. Only water ice involved in
dicates no resist contamination in the whole procedure, which is a major 
concern in conventional lithography methods. Moreover, advantages of 
in-situ imaging and patterning in iEBL guarantee accurate positioning of 
fabricated nanostructures. After carefully investigating the compati
bility between perovskites and water ice, we have fabricated a perov
skite photodetector featuring nanoscale patterned electrodes and 
superior photodetection ability with responsivity of 653 A/W and 
detectivity of 3.08 × 1013 Jones. Our study provides a simple, efficient, 
and eco-friendly way for constructing nanostructures on perovskites. It 
can be well integrated with traditional semiconductor manufacturing 
processes, beneficial to fully exploit potentials of perovskites in 

Fig. 1. Characterization of MAPbBr3 NPs. (a-c) Optical images MAPbBr3 NPs showing the thickness-dependent colors. (d) SEM image of MAPbBr3 NP with thickness 
of 300 nm. (e) AFM images of MAPbBr3 NP with thickness of 300 nm and (f and g) monolayer height profile. EDS mapping of (h) Br and (i) Pb elements. (j) XRD 
pattern of MAPbBr3 NPs. (k) PL spectrum of MAPbBr3 NPs. 
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optoelectronic devices. 

2. Results and discussion 

The space-confined growth method is used to obtain single- 
crystalline MAPbBr3 NPs with controllable thickness down to a few 
hundred nanometers [25-29]. In this process, the confined space is 
constructed by a hydrophilic and a hydrophobic Si/SiO2 substrates 
(Figs. S1 and S2). The thickness of MAPbBr3 is well-defined by the 
pressure applied to the substrates. As illustrated in Fig. 1a-c, MAPbBr3 
NPs with various thickness in nanometer range exhibit characteristic 
colors due to the effect of thin film interference (Fig. S3). This simple 
and direct visual inspection helps us harvest a certain thickness film to 
meet diverse applications [30-32]. The scanning electron microscope 
(SEM) image discloses the smooth surface that is free of domain and 
grain boundaries (Fig. 1d). Atomic force microscopy (AFM) studies show 
that the green MAPbBr3 NP exhibits a film thickness of ~300 nm 
(Fig. 1e) and a nearly atomically flat surface with a room-mean-square 
roughness of ~0.443 nm. Moreover, a monolayer of a cubic MAPbBr3 
unit cell with a height ~0.6 nm is also observed in Fig. 1f and g. The 
energy-dispersive X-ray spectroscopy (EDS) mapping image indicates 
the uniform distribution of Br and Pb elements with the composition 
ratio close to the theoretical value (Fig. 1h and i). X-ray diffraction 
(XRD) also confirms the high purity of MAPbBr3 crystal in cubic phase 
(Fig. 1j). Fig. 1k shows the photoluminescence (PL) spectrum with a 
single emission peak at ~535 nm, consistent with the band-edge emis
sion in MAPbBr3. The obtained MAPbBr3 NPs with smooth surface and 
high degree crystallinity is essential for ensuring an intimate contacting 
with the electrodes to enable the formation of ohmic contacts. 

Generally, the presence of liquid water leads to the irreversible 
decomposition of MAPbX3 to PbX2 [33-35]. In contrast to liquid water, 
moisture in the form of ambient humidity is beneficial to heal the defect 

states of MAPbBr3 through hydrogen bonding or partial solvation of 
methylammonium component [36,37]. In our experiment, we first 
verify whether single-crystalline MAPbBr3 NP is compatible with ice 
deposition. Water vapor was sprayed on the surface of MAPbBr3 NP to 
form a uniform film of amorphous ice at 130 K (see Supplementary In
formation for details) [23], and the MAPbBr3 NP was imaged in situ 
underneath the ice (Fig. 2a). Then the ice was heated to room temper
ature in a vacuum. It is worth noting that the ice was directly vaporized 
without the formation of liquid water during such a heating process (as 
marked in Fig. S4). We performed X-ray diffraction (XRD) and photo
luminescence (PL) spectra measurements before ice deposition and after 
ice sublimation. As shown in Fig. 2b and c, there were no detectable 
changes in XRD or PL spectra. Moreover, time-resolved PL (TRPL) 
measurements show negligible changes in carrier lifetime between 
original and ice-treated MAPbBr3 nanoplate (Fig. S5). It indicates that 
neither the ice deposition nor sublimation process affects the 
trap-related carrier combination of perovskite crystals. We also exam
ined the compatibility between MAPbBr3 NP and solvents involved in 
processing conventional PMMA resists. In contrast, after immersing 
MAPbBr3 NPs into these solvents (anisole, MIBK & IPA, IPA and acetone) 
for 1 min, their PL emission intensity were significantly weakened or 
even disappeared, and the crystals were eroded or dissolved, as 
demonstrated in Fig. 2d-k. These comparisons prove the superiority of 
iEBL on processing perovskites over conventional lithography methods. 
To demonstrate the general applicability of iEBL, we deposited ice resist 
on polycrystalline MAPbI3 film. As shown in Fig. S6, the morphology of 
MAPbI3 did not change and the grains were still densely stacked after ice 
sublimation. Furthermore, the PL and absorbance spectra also confirm 
the compatibility between MAPbI3 film and ice resist. 

Fig. 3a illustrates our iEBL processes for fabricating metal electrodes 
on MAPbBr3. We chose MAPbBr3 with appropriate thickness (300 nm) 
to prevent cracks forming during cooling it down to 130 K (Fig. S7). 

Fig. 2. Compatibility tests of MAPbBr3 with ice and conventional solvents. (a) SEM images of MAPbBr3 NP at room temperature and after cooling down, ice 
deposition and ice sublimation by rewarming to room temperature. Scale bar: 1 µm. (b) XRD and (c) PL spectra of MAPbBr3 NP before ice deposition and after ice 
sublimation. Insets are optical images. Scale bar: 100 µm. Optical images and PL spectra of MAPbBr3 NP before and after immersion in (d, h) anisole, (e, i) MIBK and 
IPA, (f, j) IPA and (g, k) acetone. Scale bar: 100 µm. 
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Large-area metal pads were pre-deposited on the MAPbBr3 through a 
shadow mask to improve the processing efficiency. Water vapor was 
subsequently injected onto the MAPbBr3 to form a uniform film of 
amorphous ice with thickness of 300 nm (Fig. S8). Attributed to the 
advantage of in-situ imaging (Fig. 3b and c), we could directly perform 
e-beam exposure at desired areas and inspect the as-fabricated ice 
pattern immediately. Here, we employed low-energy electrons of 2 keV 
for patterning due to its small penetration depth of electrons as well as 
high yield of secondary electrons [38,39]. Dose tests were conducted 
(Fig. S9) in advance to determine the critical dose that just completely 
removed the ice without damages to the underlying perovskite. After 

metallization at a cryogenic temperature, the MAPbBr3 was heated to 
room temperature to sublimate the ice. Temperature of the ice might 
slightly rise during the metallization process (thermal evaporation of 
Au). However, it did not affect the performance of the perovskite film 
since no liquid water formed. More SEM images for the iEBL process can 
be seen in Fig. S10. Finally, the residual metal film was curled and 
separated from the sample (Fig. 3d), which can be blown off by nitrogen 
gas easily. The whole iEBL process did not involve any solvents, ensuring 
no chemical residue and detrimental reaction with perovskite. The final 
electrode structure with gaps of 296 nm and 317 nm were successfully 
fabricated on MAPbBr3 NP (Fig. 3e-h). 

Fig. 3. IEBL fabrication process. (a) Schematic diagram for creating metal electrodes on MAPbBr3 NP by iEBL. SEM images of (b) MAPbBr3 NP with ice, (c) e-beam 
exposure on ice, (d) curly metal film before dry lift-off and (f) resultant electrodes with (g) magnified electrode gap of 296 nm and (h) 317 nm. (e) Optical image of 
MAPbBr3 NP with electrodes. 
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It is acknowledged that decreasing carrier transmission distance 
between the source and drain electrodes while maintaining the external 
quantum yield and absorption can improve the sensitivity and respon
sivity of a photodetector simultaneously [40,41]. In this paper, a 
photoconductive MAPbBr3 photodetector with a small channel width of 
296 nm has been obtained through the iEBL technique (Fig. 4a-b). 
Current-voltage (I-V) curves of the photodetector under dark and upon 
illumination (Fig. 4c and Fig. S11) imply its sensitive photoelectrical 
response from the ultraviolet to visible region. Fig. 4d shows good sta
bility and fast photoresponse of the MAPbBr3 photodetector after dozens 
of on/off switching cycles at different bias voltages of 0 V, 1 V and 3 V. 
When fixing the bias voltage between two electrodes at 3 V, we further 
obtain I-V curves of the photodetector under 450-nm light illumination 
with an irradiance varying from 12.5 to 2855 μW/cm2 (Fig. 4e). The 
linear I-V behavior indicates good ohmic contact between the gold 
electrode and MAPbBr3 (Fig. 4f), confirming the feasibility of iEBL 
technique for fabricating perovskite-based optoelectronic devices. 
Moreover, linearity features of the logarithmic power-photocurrent and 
power-responsivity curves in Fig. 4g suggest a large linear dynamic 
range of our MAPbBr3 photodetector. 

Responsivity (Rλ), detectivity (D*) and external quantum efficiency 
(EQE) are widely used to evaluate the performance of photodetectors in 

terms of sensitivity, signal-to-noise ratio and photoelectric conversion 
efficiency of the device. They can be calculated by the following 
formula: 

Rλ =
Iph − Idark

PλS  

D∗ =
Rλ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2eIdark/S2

√

EQE =
hc
e

Rλ

λ  

where e, h and c represent the elementary charge, Plank constant and the 
light velocity, 

considering the illumination wavelength (λ), light power density 
(Pλ), photocurrent (Iph), dark current (Idark) and effective illumination 
area (S) of the photodetector. Fig. 4 h and i display these three param
eters of our photodetector illuminated at different light wavelengths. In 
fact, under the radiation intensity of 12.5 μW/cm2 and the bias voltage 
of 3 V, the maximum of Rλ, D* and EQE can reach 653 A/W, 3.08 × 1013 

Jones and 180200%, respectively. Such an excellent detection perfor
mance is attributed to the formation of high-quality electrode-perovskite 

Fig. 4. Structure and characteristics of MAPbBr3 photodetectors. (a) IEBL fabrication process of MAPbBr3 photodetector. i: in situ e-beam exposure on ice resist; ii: 
metallization at 130 K; iii: residual metal films separate from the substrate after ice sublimation. iv: blown off by nitrogen gas. (b) SEM image of the MAPbBr3 
photodetector with a 296-nm-wide gap. (c) Semi-logarithmic I-V curves under dark and illumination at various light wavelengths. (d) Semi-logarithmic I-t curves 
under 450 nm illumination with on/off switching at voltage of 0, 1, and 3 V. (e) Light intensity-dependent semi-logarithmic I–V curves under 450 nm illumination. 
(f) Linear I-V curves of MAPbBr3 photodetectors at different light irradiation. (g) Photocurrent and responsivity as a function of photodensity for MAPbBr3 pho
todetectors. (h) Responsivity and detectivity and (i) EQE curves as a function of wavelength for MAPbBr3 photodetectors. 
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interface and quite small electrode gap. Detailed comparisons to other 
MAPbBr3 photodetectors fabricated through shadow mask deposition or 
transfer methods can be found in Table S1 in the Supplementary Infor
mation. It has been known that both responsivity and detectivity of a 
detector are related to illumination area. Although perovskites outside 
the electrode area can produce carriers under laser illumination, direc
tional movement of carriers is quite difficult without external electric 
field. The responsivity and detectivity of our photodetector and those in 
Table S1 are estimated using the area between electrodes rather than 
that of the laser spot as effective illumination area. 

3. Conclusion 

We have demonstrated the fabrication of high-performance 
MAPbBr3 photodetectors through developing iEBL technique. Water 
ice has been verified to be compatible with perovskite materials and it 
can be used as an effective resist for electron-beam patterning without 
damaging the underlying perovskite. High responsivity of 653 A/W and 
detectivity of more than 3 × 1013 jones have been obtained in a single 
MAPbBr3 nanoplate device, attributed to the utterly solvent-free nano
fabrication and in-situ imaging and pattering procedure in iEBL. We 
anticipate that the proposed iEBL process would open the door for 
achieving perovskite-integrated electronic and optoelectronic systems. 
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